

i-TRiLOGI
Ladder+BASIC

Version 7.0
(Floating-point Edition)

Programmer’s
Reference
Addendum

Copyright Notice and Disclaimer

All rights reserved. No parts of this manual may be reproduced in any form
without the express written permission of TRi.

Triangle Research International, Inc. (TRi) makes no representations or
warranties with respect to the contents hereof. In addition, information
contained herein are subject to change without notice. Every precaution
has been taken in the preparation of this manual. Nevertheless, TRi
assumes no responsibility for errors or omissions or any damages resulting
from the use of the information contained in this publication.

Windows is a trademark of Microsoft Inc.
All other trademarks belong to their respective owners.

Revision Sheet

Release No. Date Revision Description
1.0 12/1/2013 First release
1.1 2/4/2013 Release software version 7.01 and new RND function

i

Conditions of Sale and Product Warranty

Triangle Research International Inc. (TRi) and the Buyer agree to the following
terms and conditions of Sale and Purchase:

1. TRi Programmable Controllers and Peripherals (the Products) are guaranteed against

defects in materials or workmanship for a period of one year from the date of
registered purchase. Any unit which is found to be defective will, at the discretion of
TRi, be repaired or replaced.

2. TRi will not be responsible for the repair or replacement of any Product

damaged by user modification, negligence, abuse, improper installation, or
mishandling.

3. TRi is not responsible to the Buyer for any loss or claim of special or

consequential damages arising from the use of the product. The Products are
NOT certified to be FAILSAFE and hence must NOT be used in applications
where failure of the Product could lead to physical harm or loss of human life.
Buyer is responsible to conduct their own tests to meet the safety regulation of
their respective industry.

4. Products distributed, but not manufactured by TRi, carry the full original

manufacturers warranty. Such products include, but are not limited to: power
supplies, sensors, I/O modules and battery backed RAM.

5. TRi reserves the right to alter any feature or specification at any time.

Notes to Buyer: If you disagree with any of the above terms or conditions you
should promptly return the unit to the manufacturer or distributor within 30 days
from date of purchase for a full refund.

ii

TABLE OF CONTENTS
Page #

1 Introduction – What’s New in TL7? 1-1

1.1 Overview..1-1
1.2 Floating-point Math Support..1-1
1.3 Local Variables & Function Parameters Passings..1-2
1.4 TL7 and TL6 Compatibility Issues ..1-5
1.5 Turbo Transfer Mode..1-7
1.6 Backup Zip file ..1-8

2 TL7 Floating-point Math 2-1

2.1 Floating-point Number Representation..2-1
2.2 Floating-point Variables...2-2
2.3 Floating-point Constant ...2-2
2.4 Viewing of Floating-point Variables..2-3
2.5 Floating-point Operators..2-4
2.6 Built-in Floating-point Functions ..2-5

3 Floating-point Functions 3-1

3.1 Overview..3-1
3.2 ARCSIN(x#), ARCCOS(x#) and ARCTAN(x#)...3-1
3.3 BITS2FLOAT(n) ...3-1
3.4 CEILING(x#) ...3-2
3.5 COS(x#) ..3-2
3.6 EXP(x)...3-2
3.7 FLOAT2BITS (x#)...3-3
3.8 FLOOR(x#) ...3-3
3.9 FUNCTION (fn#, p1, p2,….)...3-3
3.10 LOAD_EEP# (n) ...3-4
3.11 Log (x#) LN(x#) ..3-4
3.12 Log10 (x#) ..3-4
3.13 PIDCompute(ch, E) PIDdef ch, lmt, P, I, D..3-5
3.14 POWER (x, y)..3-5
3.15 ROUND(x#)...3-5
3.16 RND(x#) ..3-5
3.17 SAVE_EEP# x#, n..3-6
3.18 SIN(x#) ..3-6

iii

3.19 SQRT(x#) ..3-6
3.20 STR$ (x#)..3-7
3.21 STR$ (x#, w)..3-8
3.22 TAN(x#)...3-9

iv

Chapter 1 Introduction to I-TRiLOGI 7

v

Chapter 1 What’s New In i-TRiLOGI Version 7

1 Introduction – What’s New in TL7?

1.1 Overview

This manual for I-TRiLOGI Version 7.xx (TL7) is written as an addendum to, and is
intended to be used in tandem with, the i-TRiLOGI Version 6.xx (TL6) Reference
Manual which can be downloaded from:

 http://www.triplc.com/documents/TL6ReferenceManual.pdf

By structuring the reference manual as an addendum instead of as its own
standalone manual, we attempt to provide a clear picture to existing and new users
the differences between the two groups of Super PLCs – One group can only be
programmed using TL6 and a second group that can make use of the new features
available in TL7.

1.2 Floating-point Math Support

The most important capability added to TL7 is the support of floating-point math
operations. The detail on this capability will be explained in later chapters in this
manual.

It is important to realize that TL7 does not add floating-point capability to those
PLCs that do not support it. It is only meant for programming PLCs that already
has the firmware to support the floating-point math and variables.

The following table shows the current PLC models and whether they can be
programmed with TL6 or TL7:

PLC Model i-TRiLOGi
1. Nano-10, FMD88-10, FMD1616-10 Version 6 only
2. F2424, F1616-BA and FCPU Version 6 only
3. FX2424, FX1616-BA & Fx CPU Version 7 & Version 6

Of course more new PLCs model may be added in future that are not shown in the
above table. Note that PLCs that supports floating-point operation will have
firmware >= F90.0 whereas PLC that supports only integers will have firmware <=
r8x .

1-1

http://www.triplc.com/documents/TL6ReferenceManual.pdf

Chapter 1 What’s New In i-TRiLOGI Version 7

1.3 Local Variables & Function Parameters Passings

Before TL7, all variables are global in scope, which means all variables are
accessible to all custom functions, and that changes to any variable inside a
custom function will affect all other custom functions that use the same variable.
Since all variables are global their value can be monitored and changed via the
online monitoring screen.

TL7 now supports the concept of local variables and parameter passing to and
from a custom function to make it simpler to create a library of portable custom
functions.

Up to 9 floating-point local variables: %[1] to %[9] are now available to a custom
function which are local in scope. Since these are elements of a one-dimensional
array they can be easily accessed using their index.

In TL7 you can now call a custom function with label name: “MyFunc” by one of the
following methods:

1 CALL MyFunc ‘ same as TL6

2 FP[1] = MyFunc (p1, p2, p3……p9)

3 D# = MyFunc() ‘ no parameter

4 Y# = Function (CusF#, p1, p2, p3…..p9)

Method 1 is the only method available in TL6 where no parameter is passed to the
called function and no parameters are returned. All parameters that MyFunc needs
can only be passed via global variables (A to Z, DM[n] and EMINT[n], etc) and
what MyFunc need to return to the caller are also passed via global variables. TL7
continues to support this method to maintain compatibility and also for calling
functions that do not require parameters passing.

Method 2, 3 are new and allows you to call your custom function by its label name
as if it is a built-in function and you can pass the parameters p1, p2, p3… etc
enclosed between the parentheses. The variables are separated by comma and
you can pass from zero up to a maximum of 9 variables to the called function
“MyFunc()”. When called this way the function is expected to return a data back
to the caller which is assigned to a variable (Y# in this example)

Method 4 is also new and allows you to call a function by using the new keyword
“FUNCTION” and specify the custom function by its number or its label name as
the first parameter. The actual parameters to be passed are contained from
second parameter onwards. It is compiled to the same code as Method 2 and 3.

1-2

Chapter 1 What’s New In i-TRiLOGI Version 7

Parameters Passing

The parameters p1 to p9 can only be either integer or float data type. Integer are
automatically converted to float when passed to MyFunc() as part of the parameter
list.

The parameters that are passed to MyFunc() are accessible by MyFunc() as the
local variables %[1] to %[9]. Basically p1 is passed to %[1], p2 is passed to %[2]
and so on.

E.g. Y# = MyFunc(0.25, 100, DM[1]/3.5)

When the custom function MyFunc() runs, it will find the following variables already
contain the data passed in the parameter list:

 %[1] = 0.25; %[2] = 100.0 ; %[3] = result of DM[1]/3.5

In the above examples only 3 parameters are passed. So %[4] to %[9] are not
used but are always available to the custom function as local variables.

Your custom function “MyFunc” can use any of these 9 local variables without
restriction and changes made to these variables does not affect other custom
functions. This is what is meant by “local variable” since the local variables are only
valid when the function is called and once the custom function ends these
variables will no longer contain valid data.

Needless to say any local variables used in MyFunc that is not passed as a
parameter must be initialized with valid values before being used since they may
contain stale data resulted from execution of the other custom functions.

Returning Data To Calling Function

As explained above in a statement such as

Y# = MyFunc(p1, p2, p3)

Y# will be assigned a float data returned from MyFunc(). MyFunc will return the
data using the following syntax:

RETURN = [data to be returned]

E.g. RETURN = %[7]
 RETURN = FP[20] / %[5]

If no valid data need to be returned then a simple RETURN statement suffice but
the calling function will receive a stale data that it should discard.

1-3

Chapter 1 What’s New In i-TRiLOGI Version 7

Using #defineLocal

Although the local variables %[1] to %[9] can be directly used in any expression
and you may also attach a comment to the variable name such %[3]_index,
%[5]_opensasame etc to make its purpose more self-explanatory, a more complex
mathematical formula may be more readable if it is written with well known variable
names. A new keyword #defineLocal has been introduced in I-TRiLOGI version 7
(which could be ported to I-TRiLOGI version 6.46 b2 onwards by the time you read
this document) to simplify programming task in some circumstances.

Although you can still use the global #Define table as in I-TRiLOGI version 6.4x to
define a unique label name for each of the local variable used in each custom
function, you might find it easier to use the new #defineLocal keyword to define a
unique label name to represent the local variable or other expressions.

#defineLocal has only a local scope (i.e. it is only valid within the custom function
that it is being defined) and is convenient to use since it can be copied along with
the rest of the custom function and pasted into a new program. However, unlike
the global #Define label, the help pane does not show up the content of a selected
label name defined using the #defineLocal keyword. So we recommend attaching
a suffix to a local variable name defined by the #defineLocal keyword:

E.g. you can use x1, y2, Z3 etc to represent local variables %[1], %[2] and %[3]
etc. The suffix lets you immediately identify the local variable to look for during
debugging since all the nine local variables are visible when the program stops at a
break within a custom function.

This also prevents the locally defined label name from masking the actual variable
names such as X, Y, Z etc.

Monitoring Local Variables

TL6 users may have enjoyed being able to view the value of any global variables
via the online monitoring screen at anytime, but may be surprised to learn that it is
not quite possible to do the same for the local variables. This is because local
variables are only valid within a custom function when it is being run and since the
program contains many custom functions the online monitoring screen could not
readily associate the local variables to any particular function except when it is
being run.

In order to view the values of local variables, you will need to use the same
“Breakpoint” feature found in I-TRiLOGI version 6.45. When a custom function is
run and reaches a breakpoint the program pauses and the custom function will
open at the break point, and you will be able to see the values of the 9 local
variables on the right hand panel of the custom function editor windows, as shown
below:

1-4

Chapter 1 What’s New In i-TRiLOGI Version 7

1.4 TL7 and TL6 Compatibility Issues

TL7 is designed to maintain100% backward compatibility to TL6. i.e. Any program
written in TL6 can be imported into TL7, compiled and uploaded to the new PLC
unmodified.

In addition, the PLC models that support floating-point operation are also
programmable by TL6 (obviously without floating-point). This is to ensure true
backward compatibility with Super PLCs that support only integer math. This
results in a smooth upgrade path for users of existing Super PLCs that do not
support float to upgrade to a new PLC model that supports float.

Users of TL6 are aware that TL6 only supports 32-bit integer math operations and
16 or 32-bit integer variables. In order to maintain true backward compatibility to
TL6, TL7 simultaneously support integer and floating-point math and automatically
does the necessary type casting (i.e. conversion) between the two data types.

That is to say, TL7 does not automatically treat all numerical variables as floating-
point data type (aka “float”) or perform only float operation. Integer variables that

1-5

Chapter 1 What’s New In i-TRiLOGI Version 7

are assigned integer value will continue to keep the data as pure integer with up to
32-bit precision. Mathematical operators that support both integer and float (such
as addition, division, etc) will elect to perform the integer operation or float
operation at run time based on the operand data type. E.g. a “divide” operator (“/”)
will perform integer divide on two integer operands but will perform a floating-point
divide if any of the two operands is a float. If one of the operand is a float and the
other is an integer, the integer operand will be converted to float before float
division is performed.

If you supply a float variable or a float constant to any command or function that
expects an integer (e.g. the index of a DM[] or the channel number of a SETDAC
command), TL7 will dynamically convert the float data to integer first and perform
the operation as if they are integer data.

E.g. The following statements are valid:

 FOR %[5] = 1.0 to 10.0
 DM[%[5]] = %[6] * 2.15
 NEXT

Even though %[5] (local variable) is a float it will be converted into an integer and
hence can be used as an index to access DM[].

Compatibility Exception

As mentioned earlier, in most mathematic expressions TL7 will handle arithmetic
involving floating-point differently than those involving pure integer in order to
maintain backward compatibility with TL6.

The only exceptions are the PIDcompute and PIDDef functions, where the E, P, I,
and D parameters as well as all internally stored Integral and derivative values are
inherently floating-point data. If your program supplies an integer data to a
PIDCompute or PIDDef function it will first be converted into float and all PID
computation will only be carried out in float.

This however should not become an issue for user upgrading from PLCs without
floating-point to one with floating-point, since a floating-point number should be
able to represent the range of numbers typically used for PID control, and one of
the main reasons for moving to a floating-point PLC is often that it is simpler to
handle PID calculation using floating-point than fixed point arithmetic.

1-6

Chapter 1 What’s New In i-TRiLOGI Version 7

1.5 Turbo Transfer Mode

TL7 now supports a default "Turbo Transfer" mode, which uses binary FTP
protocol to upload the code image to the PLC instead of via ASCII command
strings. Turbo Transfer can greatly reduce the program transfer time for very long
PC7 program. This can greatly enhance programmer's productivity during program
development when small changes to the program happen very frequently.

However, in order for Turbo Transfer mode to work, it requires that the PLC's FTP
server to be accessible in active mode from i-TRiLOGI. Normally this is not an
issue when the PC and the PLC are on the same local area network. However, in
the case where the PLC is sitting behind a NAT firewall where only port 9080 is
mapped, a user using i-TRiLOGI to remotely program the PLC via the Internet will
notice that the PC running i-TRiLOGI may not be able to access the FTP server
port (21) on the PLC, and therefore the Turbo Transfer mode will fail.

Fortunately, when Turbo Transfer fails, I-TRiLOGI will automatically switch back to
regular transfer mode using ASCII string to transfer the codes one block at a time
via port 9080. The user can also selectively disable Turbo Transfer mode to
reduce the time wasted in trying for Turbo Transfer mode that could not be
performed. Turbo transfer de-selection is volatile. When TL7 is re-started Turbo
Transfer Mode will be selected by default.

1-7

Chapter 1 What’s New In i-TRiLOGI Version 7

1.6 Backup Zip file

New in TL7: Every time you save the current PC7 program to the hard disk, TL7
will at the same time create a zip archive to store the current program as well as
past 4 copies of your PC7 program as “Backup001.PC7” to “Backup004.PC7”.
This zip serves an additional safe guard for your program in case of unanticipated
circumstances you can try to retrieve the backup copy from this zip archive.

We strong recommend that you regularly copy the zip file to a backup flash drive
or email it to yourself for safe keeping.

1-8

Chapter 2 – Floating-point Math in TL7

Chapter 2 TL7 Floating-point Math

Chapter 2 – Floating-point Math in TL7

2 TL7 Floating-point Math

2.1 Floating-point Number Representation

TL7 uses IEEE, 32-bit Single Precision format to represent all float numbers. For
more information on how single precision float are encoded into 32-bit of data,
please refer to the following link:

http://en.wikipedia.org/wiki/Single-precision_floating-point_format

However, in-depth knowledge of how float are actually encoded are not required
for TL7 users since TL7 automatically handles the floating-point data conversion to
and from its binary representation. All you need to know are the range of numbers
that an IEEE single precision floating-point number can represent, as follow:

Minimum positive value 1.18 × 10−38
Maximum positive value 3.4 × 1038.
Minimum negative value -3.4 × 1038
Maximum negative value -1.18 × 10−38
±Zero Yes
± Infinity Yes
NaN (not a number) Yes

Special formats are used to represent special numbers such as zeros (there are
positive zero and negative zeros but they compare as equal), infinity and NaN.
These are supported by TL7.

Note: Having the basic knowledge of how the float data are actually encoded in

32-bit binary number is useful when you need to transport the numbers to
and from external devices via serial or Ethernet communication. TL7
supports special function “Float2Bits(float)” to convert a float into its
32-bit IEEE format and the function “Bits2Float(integer)” to decode a
32-bit IEEE representation (of a single precision float) back into a floating-
point number. This makes it very simple to send and retrieve float data via
Modbus and Hostlink commands that traditionally support only 16-bit and
32-bit integer data.

2-1

http://en.wikipedia.org/wiki/Single-precision_floating-point_format

Chapter 2 – Floating-point Math in TL7

2.2 Floating-point Variables

TL7 uses IEEE, 32-bit Single Precision format to represent all float numbers. For
more information on how single precision float are encoded into 32-bit of data,
please refer to the following link:

TL7 added the following new Floating-point variables

Floating-point variables Type
A# to Z# Global variable
FP[1] to FP[1000] Global variable
%[1] to %[9] Local variables*

* Support of “Local variables” is a completely new addition to TL7 that allows up

to 9 floating-point parameters to be passed to and used within a custom
function. Please refer to Section 1.3 in this manual for more detailed explanation
of local variables.

2.3 Floating-point Constant

Float constants can be entered into TBASIC using the popular floating-point format
as shown in the following examples:

Number Format 1 Format 2 Format 3 Format 4
123.4567 123.4567 1.234567E2 1.234567e+02 +1.234567e+02
-0.0004567 -0.004567 -4.567E-4 -4.567e-4 -4.56700e-04
12345 12345.0 1.2345E4 +1.2345e04 1.2345e+04
0 +0.0 -0.0

It is important to note that if you want to use a whole number as a floating-point
number in an expression, you should append it with a decimal point and a 0. i.e.
123 should be entered as 123.0. The reason being that certain operators such
as “/” (divide by) operate differently on floating-point numbers than that on
integers.

E.g. A# = 11.0/2.0 = 5.5
 A# = 11/2 = 5

In the second expression, 11/2 is treated as an integer divide between two integers
11 and 2 and the result is an integer 5 without any fractional part. When the result
is finally assigned to A# it has already lost its fractional part. But as long as one
of the two operands is a float (such as 11.0 or 2.0) the divide operator will perform
floating-point division and return a float.

Likewise, A# = 345/0 => Run time error: Divide by Zero

 A# = 345/0.0 = +Infinity

2-2

Chapter 2 – Floating-point Math in TL7

Special Floating-point Constant

Due to their relatively rare use in control system, TL7 does not create special
keywords to represent special float numbers such as +infinity. If you really need to
use such special numbers in your program you can use the Bits2Float() function to
convert their 32-bit integer representation into these special numbers, as follow:

+ Infinity E.g. A# = Bits2Float(&H7F800000)
- Infinity E.g. B# = Bits2Float(&HFF800000)
NaN E.g. C# = Bist2Float(&H7FC00000)

TL7 however thus support the keyword NaN (not a number) since this may be used
to return to a caller to alert the caller that it has supplied invalid parameters being
supplied by the caller.

2.4 Viewing of Floating-point Variables

TL7 added an additional screen to the “View Variable” screen of the
simulator/online monitoring screen to display all the new floating-point variables A#
to Z# as well as the floating-point array FP[1] to FP[1000] as shown below:

You can click on the “PgUp” or “PgDn” button on the screen or use the “PgUp” and
“PgDn” keys on your keyboard to scroll through all the pages to view all 1000 FP[]
variables.

The third button: “IEEE” - let you switch the view of the values of these floating-
point variables between human readable decimal format and their actual IEEE 32-

2-3

Chapter 2 – Floating-point Math in TL7

bit single precision format. In IEEE mode these values are displayed as 8
characters of hexadecimal digits.

If you are interested in seeing how the floating-point values are represented in
IEEE format you can use the following online calculator to verify the data you
observe on the screen:

http://www.h-schmidt.net/FloatConverter/

2.5 Floating-point Operators
"Operators" perform mathematical or logical operations on data. TBASIC supports
the following integer operators:

i) Assignment Operator (=):

A floating-point variable (FP[], A# to Z#, %[1] to %[9]) may be assigned a
numeric value or the result of a numeric expression using the assignment
operator " = "

 A# = 1000
 X = H*I+J + len(A$)/FP[5]

ii) Arithmetic Operators:

Symbol Operation Example
+ Addition A# = B+C+25

- Subtraction Z = TIME[3]-10

* Multiplication PRINT #1 X*Y

/ Division X = A/(100+B)

A numeric expression using the above arithmetic operator can include both
integers and floating-point numbers. As long as one of the two numbers is a
float the integer number will be converted to float and then the floating-point
operator will be used and the result is a float. However if both operands of an
arithmetic operator are integers then the integer operator will be used and an
integer number will be returned.

iv) Relational Operators :

Used exclusively for decision making expression in statement such as IF
expression THEN and WHILE expression

2-4

http://www.h-schmidt.net/FloatConverter/

Chapter 2 – Floating-point Math in TL7

Symbol Operation Example

= Equal To IF A = 100
<> Not Equal To WHILE CTR_PV[0]<> 0
> Greater Than IF B > C/(D+10)
< Less Than IF TIME[3] < 59

>= Greater Than or Equal To WHILE X >= 10
<= Less Than or Equal To IF DM[I] <= 5678

AND Relational AND IF A# >B# AND C<=D
OR Relational OR IF A#<>0.0 OR B# >=1000

The programmer should bear in mind that a decimal floating-point number in
a computer is at best an approximation of the real data and not an exact
number. Any arithmetic operation carried out on a number could result in
rounding or truncation errors of the resulting. So comparison of two numbers
using the "Equal" operator may not always work as expected. E.g.

A# = 0.0
FOR I = 1 to 1000
 A# = A# + 0.1
NEXT

IF A# = 100.0 THEN
 SETLCD 1,1, "True"
ELSE
 SETLCD 1,1, "False"
ENDIF

At first glance you may expect that the result should be "True" since adding 0.1
to A# 100 times should means A# = 100.000 after the program is run?
However, when you execute this program you may be surprised that the result
is "False". Further examination of the execution result you can see that after
adding 0.1 to A# 100 times, A# actually contain the value "99.999", which is
quite close to 100.0 but not exactly. The error is due to cumulative truncation
errors resulting from floating-point addition. Hence you shoudl avoid using the
"Equal" operator to compare two floating-point numbers directly.

2.6 Built-in Floating-point Functions

There are a number of built-in floating-point functions such as trigonometric
functions (SIN, COS, TAN) , Logarithmic functions (Ln and Log10), power and

square root function as well as exponential (ex) functions. The syntax of these
functions are described in details in the next Chapter.

2-5

Chapter 3 – Floating-point Functions

Chapter 3 Floating-point Functions

Chapter 3 – Floating-point Functions

3 Floating-point Functions

3.1 Overview

A number of new built-in functions that support floating-point math have been
added to TL7. Some functions that previously only work with integer math have
also been modified to support floating-point operations.

This chapter will list the syntax of these new functions as well as functions that
have been modified to accommodate floating-point data. However, functions that
simply convert floating-point operand to integer and work on it will not be repeated
here. E.g. function such as STATUS(n) - if you supply n as a floating-point data
it will simply be converted to integer for use by the STATUS(n) function and there
is no difference in the outcome. Please refer to the TBASIC keywords in TL6
Programmer’s Reference manual for other functions and commands.

3.2 ARCSIN(x#), ARCCOS(x#) and ARCTAN(x#)

Purpose : To compute and return the inverse-sine, cosine or tangent of the operand
x# in radians. This function will return a NaN if the operand x# is invalid.

Examples : A# = ARCSIN(0.5)

Comments : A# will receive the value 0.5235987 (unit is radians). To convert to degree

multiply by 180/π = 30 degree.

See Also : SIN(x#), COS(x#), TAN(x#)

3.3 BITS2FLOAT(n)

Purpose : n should be a 32-bit integer representing the floating-point variable in
IEEE single precision format and this function returns the actual float
value that it represents.

Examples : A# = BITS2FLOAT(&H3F9E0610)

Comments : A# will receive the value 1.23456

See Also : FLOAT2BITS(x#)

3-1

Chapter 3 – Floating-point Functions

3.4 CEILING(x#)

Purpose : Returns the smallest integer that is not less than x#.

Examples : A# = CEILING (3.456)
 B# = CEILING (-3.456)

Comments : A# will be assigned the value 4.0 and B# will be assigned the value –3.0

See Also : FLOOR(x#), ROUND(x#)

3.5 COS(x#)

Purpose : Returns the COSINE of the angle x#

 x# should be in radian. If your angle in degree you must convert
 it to radian first. Radian = degree /180 * π

Examples : A# = COS(0.5)

Comments : A# will be assigned the value 0.8776

See Also : ARCCOS(x#), SIN(x#), TAN(x#),

3.6 EXP(x)

Purpose : Returns the exponential ex
e is the mathematical constant (Euler’s number) which is approximately
= 2.71828,

Examples : A# = EXP(1.5)

Comments : A# will be assigned the value 4.48169

See Also : LOG(x#) or LN(x#)

3-2

Chapter 3 – Floating-point Functions

3.7 FLOAT2BITS (x#)

Purpose : Return the 32-bit integer representing the IEEE single precision format
that of the floating-point number x#

Examples : A = FLOAT2BITS (3.1416)

Comments : A will receive the value = &H40490FF9 (1078530041 in decimal)

See Also : BITSFLOAT(n)

3.8 FLOOR(x#)

Purpose : Returns the largest integer that is not greater than x#.

Examples : A# = FLOOR(3.456)
 B# = FLOOR (-3.456)

Comments : A# will be assigned the value 3.0 and B# will be assigned the value –4.0

See Also : CEILING(n#), ROUND(n#)

3.9 FUNCTION (fn#, p1, p2,….)

Purpose : One way of calling a custom function using its function # (or label name)
and supplying parameters p1, p2 separated by commas.

Examples : A# = FUNCTION (10, B#, FP[5], 0.1245)

Comments : Custom function #10 will be called and the values in B#, FP[5] and the

constant 0.1245 will be passed to function #10 as local variables %[1] to
%[3].

 A# will be assigned the value returned by function #10 via the RETURN =

[return value] statement.

 See Also : Section 1.3 in this manual

3-3

Chapter 3 – Floating-point Functions

3.10 LOAD_EEP# (n)

Purpose : Return the floating-point data loaded from EEPROM/RAM at address n

Examples : A# = LOAD_EEP#(10)

Comments : Note that LOAD_EEP# and SAVE_EEP# uses the identical EEPROM

space as LOAD_EEP32 and SAVE_EEP32. For more details please refer
to LOAD_EEPXXX command in the TL6 Programmer’s Reference
manual.

 Thus, if you are using the EEPROM space to save both integer and float

data, you must manage the memory space properly to ensure that this
command does not overwrite the memory space reserved for saving 8, 16
or 32-bit integers.

See Also : SAVE_EEP# , SAVE_EEP32, LOAD_EEP32

3.11 Log (x#)
 LN(x#)

Purpose : Returns the natural logarithm of x#.
 LOG(x) and LN(x) are identical command.

Examples : A# = LOG(120.40)

Comments : A# will be assigned the value 4.7908196

See Also : EXP(x)

3.12 Log10 (x#)

Purpose : Returns the base-10 Logarithm (a.k.a. Common Log) of x#.

Examples : A# = LOG10(120.40)

Comments : A# will be assigned the value 2.0806265

See Also : POWER(x,y)

3-4

Chapter 3 – Floating-point Functions

3.13 PIDCompute(ch, E)
 PIDdef ch, lmt, P, I, D

Purpose : These two functions work exactly the same in TL6, except that now E, P, I

and D take only floating-point data. If you supply integer data for E, P, I or
D the software will convert them into float and used for computation.

 For detailed explanation of how these two commands are used please

refer to TL6 Reference manual.

3.14 POWER (x, y)

Purpose : Returns the value of x raised to the power of y. i.e. xy

Examples : A# = POWER(10.75, 3.54)

Comments : A# will be assigned the value 4479.0503

See Also : LOG10 (n#)

3.15 ROUND(x#)

Purpose : Round the x# to the nearest integer and return the integer value.

Examples : A# = ROUND(120.49)
 B# = ROUND(-120.49)
 C# = ROUND(250.50)
 D# = ROUND(-250.50)

Comments : Result A# = 120 , B# = -120, C# = 251, D# = -251.

See Also : CEILING, FLOOR

3.16 RND(x#)

Purpose : Get a random number n# such that 0.0 < n# < x#

Examples : A# = RND(50)

Comments : A# will be between 0.0 and 50.0

Note : This command only available from i-TRiLOGI Version 7.01 and firmware >=

F90.2.

3-5

Chapter 3 – Floating-point Functions

3.17 SAVE_EEP# x#, n

Purpose : Save the 32-bit IEEE single precision number that represent the floating-
point data x# to the EEPROM/FRAM address n.

Examples : SAVE_EEP# FP[20], 100

Comments : Float data contained in variable FP[20] will be saved to the EEPROM

address 100.

 Note that LOAD_EEP# and SAVE_EEP# uses the identical EEPROM

space as LOAD_EEP32 and SAVE_EEP32. For more details please refer
to LOAD_EEPXXX command in the TL6 Programmer’s Reference
manual.

 Thus, if you are using the EEPROM space to store both integer and float

data, you must manage the memory space properly to ensure that this
command does not overwrite the memory space reserved for saving 8, 16
or 32-bit integers.

See Also : LOAD_EEP# , SAVE_EEP32, LOAD_EEP32

3.18 SIN(x#)

Purpose : Returns the SINE of the angle x#

 x# should be in radian. If your angle in degree you must convert
 it to radian first. Radian = degree /180 * π

Examples : A# = SIN(0.5)

Comments : A# will be assigned the value of 0.47942555

See Also : ARCSIN(x#), COS(x#), TAN(x#)

3.19 SQRT(x#)

Purpose : Returns the Square Root of the float number x#

 x# must be >= 0. Otherwise the function will return a NaN.

Examples : A# = SQRT(50.0)

Comments : A# will be assigned the value of 7.071068

See Also : POWER (x, y)

3-6

Chapter 3 – Floating-point Functions

3.20 STR$ (x#)

Purpose : Convert the floating-point variable x# into its string representation.

 This function shares the same function name as the STR$(n) found in

TL6, When n is an integer STR$(n) will return the string representing the
integer as described in TL6 programmer’s Reference to maintain
backward compatibility.

 However, when the operand is a floating-point data, STR$(x#) will return

the string representing the data as either “regular” floating format such as
xxx.yyyyy or in scientific notation such as + x.xxxxxxxE+nn, depending on
the range of values x# falls into. The following criteria can be used to
predict the format of the string that STR$(x#) will return:

Value range of x# Format Example

0.0001 < |x#| < 1.0 +0.ffffffff
1 decimal digit and 7
fractional digits.

+0.0012345
-0.4560000
+0.0920000

1.0 < |x#| < 1.0 x107 +ddd.fffff
n decimal digit and (8-n)
fractional digits

+123.45600
+90014.016
-55.678000

|x#| > 1.0 x107

|x#| < 0.0001

+d.fffffffE+nn
1 decimal digit and 7
fractional digits. 2
exponent digits

+2.5670000E+08
-1.3456000E-04
+7.3300000E-09

 Notice that in all formats, number of decimal digit+number of fractional

digit = 8. In particular, the scientific notation format only uses the following
format:

 + x.xxxxxxxE+nn

 i.e. the returned string will always start with a sign, then a single decimal

digit followed by 7 fractional digits, an E and then the sign of the
exponent, followed by the two digit exponents. The length of the returned
string is always14 characters when it returns in scientific notation.

 Eg. +1.2345000E+10, -9.8763475E-05

 This function will return variable significant digit based on the value it

evaluated. For fixed number of significant digit, please refer to the next
command STR$(x#, w)

Example : A$ = STR$(0.000012345) => A$ = +1.2344999E-05

Comment : A$ did not get the string “+1.2345000E-05” as expected because this

number cannot be precisely represented by the IEEE single precision

3-7

Chapter 3 – Floating-point Functions

format and therefore it is approximated by its closest number
+1.2344999E-05.

See Also : STR$(x#, w)

3.21 STR$ (x#, w)

Purpose : Convert the floating-point variable x# into a string representation with w
number of characters, where either 8 < w < 14 or -6 < w < 0

 This function shares the same function name as the STR$(n, d) found in

TL6, where n is the integer value and d is the number of characters.
When n is an integer STR$(n, d) will return the string exactly as
described in TL6 programmer’s Reference to maintain backward
compatibility.

 However, when the first operand is a float, the function STR$(x#, w) will

only return the string according to the following rules:

 W String Format
a) 0 < w < 8 (minimum positive) + d.fE+nn

E.g. 3.4E+05

b) w >= 14 (maximum positive) + d.fffffffE+nn
E.g. +1.2345678E-05

c) w = 0 Rounded to the nearest integer.

d) –6 < w < 0 | w | represents the number of decimal
places in the returned string.

a) When w is zero, STR$(x#, 0) returns a string representing an integer equal to

rounding of x# to the nearest integer.

b) When w < 0, the function will never return a string in scientific notation, but will
always return x# as a regular expression nnn.ffff where |w| represents the
number of decimal places.

 E.g. STR$(0.0123456, -4) => 0.0123 (4 decimal places)

c) When w is a positive number, STR$(x#, w) function will only return a string
representation of x# in scientific notation in the following format:

3-8

Chapter 3 – Floating-point Functions

 + d.fffffffE+nn

The shortest format that this function returns is: +d.fE+nn which is is 8
characters wide.

The longest format that this function returns is +d.fffffffE+nn which is 14
characters wide

Example : A$ = STR$(0.000012346, 10)
 B$ = STR$(-0.000012346,8)
 C$ = STR$(-0.000012346,16)
 D$ = STR$(-0.000012346,12)

Result : A$ = “+1.235E-05”
 B$ = “-1.2E-05”
 C$ = “-1.2346000E-05”
 D$ = “-1.23460E-05”

Comments : If w is < 8 but > 0, the function will return the shortest form which is 8

characters wide. If w > 14 the function will return the longest form which is
14 characters wide.

 The data will be rounded up to the precision level necessary to represent

the data in w number of characters.

3.22 TAN(x#)

Purpose : Returns the TANGENT of the angle x#
 x# should be in radian. If your angle in degree you must convert
 it to radian first. Radian = degree /180 * π

Examples : A# = TAN(0.5)

Comments : A# will be assigned the value of 0.5463025

See Also : ARCTAN(x#), SIN(x#), COS(x#)

*********************************** THE END ************************************

For detailed information about how to use the i-TRiLOGI software including
installation procedure and TLServer functionality, kindly refer to the TL6
Reference Manual, which can be downloaded from:

3-9

Chapter 3 – Floating-point Functions

http://www.triplc.com/documentations.htm

3-10

http://www.triplc.com/documentations.htm

	1 Introduction – What’s New in TL7?
	1.1 Overview
	1.2 Floating-point Math Support
	1.3 Local Variables & Function Parameters Passings
	1.4 TL7 and TL6 Compatibility Issues
	1.5 Turbo Transfer Mode
	1.6 Backup Zip file
	1
	2 TL7 Floating-point Math
	2.1 Floating-point Number Representation
	2.2 Floating-point Variables
	2.3 Floating-point Constant
	2.4 Viewing of Floating-point Variables
	2.5 Floating-point Operators
	2.6 Built-in Floating-point Functions

	1
	3 Floating-point Functions
	3.1 Overview
	3.2 ARCSIN(x#), ARCCOS(x#) and ARCTAN(x#)
	3.3 BITS2FLOAT(n)
	3.4 CEILING(x#)
	3.5 COS(x#)
	3.6 EXP(x)
	3.7 FLOAT2BITS (x#)
	3.8 FLOOR(x#)
	3.9 FUNCTION (fn#, p1, p2,….)
	3.10 LOAD_EEP# (n)
	3.11 Log (x#) LN(x#)
	3.12 Log10 (x#)
	3.13 PIDCompute(ch, E) PIDdef ch, lmt, P, I, D
	3.14 POWER (x, y)
	3.15 ROUND(x#)
	3.16 RND(x#)
	3.17 SAVE_EEP# x#, n
	3.18 SIN(x#)
	3.19 SQRT(x#)
	3.20 STR$ (x#)
	3.21 STR$ (x#, w)
	3.22 TAN(x#)

